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The temporal development of two-dimensional viscous incompressible flow generated 
by a circular cylinder impulsively started into steady rotatory and rectilinear motion at 
Re = 200 (based on the cylinder diameter 2a and the magnitude U of the rectilinear 
velocity) is studied computationally. We use an explicit finite-difference/pseudospectral 
technique and a new implementation of the Biot-Savart law to integrate a 
velocity/vorticity formulation of the Navier-Stokes equations. Results are presented 
for the four angular : rectilinear speed ratios a = Qa/ U (where Q is the angular speed) 
considered experimentally by Coutanceau & Mtnard (1985). For a d 1, extension of 
the computations to dimensionless times larger than achieved either in the experimental 
work or in the computations of Badr & Dennis (1985) allows for a more complete 
discussion of the temporal development of the wake. Using the frame-invariant 
vorticity distribution, we discuss several aspects of the vortex kinematics and dynamics 
not revealed by the earlier work, in which vortex cores were identified from frame- 
dependent streamline and streamfunction information. Consideration of the flow in the 
absence of sidewalls confirms the artifactual nature of the trajectory of the first vortex 
reported by Coutanceau & Mtnard for a = 3.25. For a greater than unity (the largest 
value considered by Badr & Dennis), our results indicate that at Re = 200 shedding of 
more than one vortex does indeed occur for a = 3.25 (and possibly for larger a), in 
contrast to the conclusion of Coutanceau & Menard. Moreover, the shedding process 
is very different from that associated with the usual Karman vortex street for a = 0. 
Specifically, consecutive vortices can be shed from one side of the cylinder and be of 
the same sense, in contrast to the non-rotating case, in which mirror-image vortices of 
opposite sense are shed alternately from opposite sides of the cylinder. The results are 
discussed in relation to the possibility of suppressing vortex shedding by open- or 
closed-loop control of the rotation rate. 
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1. Introduction 
Flow past a rotating circular cylinder is a prototypical problem in the study of 

unsteady flow separation (Telionis 198 1). It is also of considerable practical importance 
in boundary-layer control on airfoils (cf. Tennant, Johnson & Krothapalli 1976 and 
Modi, Mokhtarian & Yokomizo 1990), and in lift enhancement schemes employing the 
Magnus effect (Swanson 1961). Rotation of all or part of a body may also have 
applications in active or feedback control of vortex shedding, with important 
consequences for wake modification and the reduction of flow-induced vibration. 

In this work, we describe the development of the two-dimensional flow generated by 
a circular cylinder of radius a started impulsively into combined steady rotatory and 
rectilinear motion, with angular speed L2 about its axis and rectilinear speed U normal 
to its generators. The fluid is taken to be at rest initially. The two parameters governing 
the development of the flow are the Reynolds number, defined by Re = 2aU/v, where 
v is the kinematic viscosity, and the ratio of rotatory to rectilinear speeds, defined by 
u = Ba/U.  

Experimental studies of the nominally two-dimensional flow past a circular cylinder 
undergoing steady rotatory and rectilinear motion have been conducted by Prandtl 
(Prandtl 1925; Prandtl & Tietjens 1934), Taneda (1977, 1980), Koromilas & Telionis 
(1980), Diaz et al. (1983), WerlC (1984), and Kimura, Tsutahara & Wang (1992). The 
most detailed work is that of Coustanceau & MCnard (1985) and Badr et al. (1990), in 
which papers an excellent summary of earlier work can be found. On the basis of their 
experiments (primarily at Re = 200, but including results for Re as high as lOOO), 
Coutanceau & Mtnard (1985) concluded that a (modified) Karman vortex street 

disappears completely for a greater than a certain limiting value aL. The value of aL has 
been found to be not very dependent on the Reynolds number and to be about 2. For 
a > a ,  no other eddy is created after El (the first eddy formed) during the time of the 
observations, so that the eddy street must have been destroyed. 

They found this conclusion to be consistent with the earlier experimental work at 
higher Re by Prandtl, Diaz et al., and WerlC and proposed, as a siinple physical 
explanation for the disappearance of the Kirmin vortex street at sufficiently high 
values of a, that 

for low values of a, eddies would be alternately shed on each side of the cylinder to form 
a BCnard-Karman street, as for the pure translation (a = 0). But the eddies on the side 
moving in the direction of the rotation decrease progressively when a increases and then 
disappear completely. Thus it was found that the Benard-Karman structure begins to 
deteriorate as soon as the peripheral velocity becomes greater than the free-stream 
velocity (giving rise to a zigzag oscillating wake) and finally disappears for a > 2.5. 

When one examines the evidence for these statements, one finds that it is not 
overwhelmingly strong at lower values of Re, particularly for the critical value of a and 
its dependence on Re. For Re = 9000 and several values of a, Diaz et al. (1983) made 
hot-wire measurements of the streamwise velocity, and computed its autocorrelation. 
They found that for 01 = 0 and 1, the velocity autocorrelations were very similar, 
approximately periodic, and had local maxima separated by a time corresponding to 
the nominal Strouhal frequency. For a = 1.5 and 2, the autocorrelation function was 
progressively reduced. Diaz et al. (1983) did indeed conclude that ‘for peripheral 
velocities up to the value of the free-stream velocity, a distinct Karman vortex activity 
exists within the wake, whereas for greater peripheral velocities, the Karman activity 
deteriorates and disappears for values in excess of twice the free-stream velocity.’ On 
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the other hand, for Re z 3300 Werlk (1984) noted that for values of a in excess of that 
at which separation is eliminated, ‘when the tangential velocity increases further, the 
cylinder finally entrains an entire layer of relatively turbulent fluid in its rotation. More 
or less periodic instabilities then appear.’ From this, it is not clear whether vortex 
shedding is really suppressed by rotation at Re % 3300. At Re = lo3, Badr et al. (1990) 
found experimentally and computationally that the second vortex was formed much 
later for a = 2 than for a = 1, and was also much weaker. For a = 3 ,  their experiments 
and computations showed that the first two vortices formed were of the same 
rotational sense, and that one of the vortices is shed downstream, while the other ‘is 
washed down to the frontal part of the cylinder and disappears’. For larger 
dimensionless times, their two-dimensional computations show that no additional 
vortices are formed, and the computed flow approaches a steady state. In their 
experiments, ‘three-dimensional and instability effects become more pronounced, 
especially in the wake’. At the lower Re in the experiments of Coutanceau & MCnard 
(1985), the towing tank used allowed observations to be made over only a very limited 
range of dimensionless time. 

The issues of whether the Karman vortex street is destroyed and vortex shedding is 
suppressed are of considerable practical interest from the standpoint of wake 
modification and the reduction of flow-induced vibration. In particular, it is of interest 
to determine whether, for a given Re, there is a value of aL beyond which (two- or 
three-dimensional) vortex shedding disappears. An additional factor tending to 
complicate the experimental resolution of these issues is that in either a fixed reference 
frame or one translating with the cylinder, the generation and shedding of vortices is 
easily masked (Perry, Chong & Lim 1982) at large values of a by the high velocities 
induced in the near wake by the rapidly rotating cylinder. Although experimental 
techniques for measuring vorticity are under development for two- and three- 
dimensional flows (cf. Klewicki & Falco 1991), the vorticity distribution frequently can 
be determined conveniently by direct computation of the vorticity, which is a frame- 
invariant quantity. 

To date, however, most of the theoretical studies have shed no light on the question 
of whether cylinder rotation can suppress vortex shedding. The analytical investigations 
offlow past a rotating and translating circular cylinder (Krahn 1955; Glauert 1957a, b;  
Moore 1957; and Wood 1957) are based on steady boundary-layer theory, and are 
hence inapplicable to investigation of the unsteady separated flow associated with 
vortex shedding. The computational investigations of flow generated by a rotating and 
translating cylinder reported by Ta Phuoc LOC (1975), Lyulka (1977), Townsend 
(1980), Ingham (1983), Ingham & Tang (1990), and Tang & Ingham (1991) concern 
only the steady flow with Re < 30. Although Shkadova (1982) discussed a 
computational algorithm for the unsteady flow, she presented only a single set of 
streamlines for each of a few combinations of Re and a (Re = 20, 40, and 80 for 
a = 0.2, and Re = 40 for a = 3). She did not discuss unsteady effects for the case of a 
rotating and translating cylinder, and it is not clear whether the streamlines presented 
for each combination of Re and a pertained to a computed steady flow, or to 
instantaneous streamlines (at unspecified times) in an unsteady flow. In the earlier 
work of Simuni (1967) concerning the flow generated by a cylinder accelerated 
smoothly (rather than impulsively) into rotatory and rectilinear motion, the time- 
dependence of the body motion was not clearly specified, nor was any information 
provided about the time-dependence of the computed solution. 

To the best of our knowledge, other than the experimental work of Coutanceau & 
MCnard (1985), Badr et al. (1990), and Kimura et al. (1992), the only investigations of 
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vortex shedding by a steadily rotating and translating circular cylinder in the laminar 
regime are the computational studies of Badr & Dennis (1985), Badr, Dennis & Young 
(1989), Badr et al. (1990), Kimura et al. (1992) and Chang & Chern (1992). Although 
Badr and coworkers realized the importance of extending the computations to larger 
a, their work for Re = 200 was limited to a < 1, and so shed no light on the conclusion 
of Coutanceau & MCnard (1985) cited above. The computational work of Kimura 
et al., covering the Re range from approximately 400 to lo4, uses a discrete vortex 
method with the cylinder surface divided into only 14 segments. The smallest Re at 
which these authors present results is at a poorly defined value near 400, for which they 
indicate only that ‘meandering’ of the wake occurs for a < 1.8, and that for a > 2.6 
‘meandering disappears, but this value is not so definitive’. On the other hand, 
although the extensive and well-resolved two-dimensional computations of Chang & 
Chern support the authors’ detailed description of different two-dimensional flow 
regimes in the range 1 O3 ,< Re < 1 06, a < 2, they concern a range of Re and a in which, 
on the basis of what is known of the non-rotating case (Williamson 1988), the two- 
dimensionality of the flow is in doubt. 

In the present work, for Re = 200, we present computations extending the range of 
a to the highest value (3.25) studied experimentally by Coutanceau & MCnard (1985). 
After comparing our results at lower values of a to the previous work of Coutanceau 
& Menard (1985) and Badr & Dennis (1985), we present results for the two largest 
values of a (2.07 and 3.25) considered by the former authors. Ours is the first 
computational investigation at Re = 200 for a > 1, and is significant in the light of the 
earlier conclusions that vortex shedding is suppressed for a > 1 or a > 2.5. Our 
computed results are in excellent agreement with the experiments of Coutanceau & 
MCnard (1985) for Re = 200 and a = 2.07. We then present strong evidence in support 
of the hypothesis that rotation does not suppress vortex shedding for Re = 200 and 
a = 3.25. This evidence, consisting of streamlines viewed from a reference frame 
moving with a vortex, and of contours of constant vorticity, is of a type not 
easily obtainable in the laboratory, and provides an important demonstration 
of the capability of computational methods to resolve questions arising from 
experiment. 

In $2, we present the governing equations, along with a transformed version 
appropriate for computations with a body-fitted time-dependent grid used for 
a = 3.25. In $ 3 ,  we briefly describe the numerical methods employed, including a new 
implementation of the Biot-Savart law used to satisfy boundary conditions on the 
vorticity at the cylinder and on the velocity in the far field. Section 4 discusses a 
technique, more general than that employed in earlier studies, for determining the 
initial flow (at t = Of). The main results, inluding comparison to the experiments of 
Coutanceau & MCnard (1985) and discussion of features of the flow not elucidated by 
their work or earlier computations, are presented in $5 ,  followed by a more general 
discussion in $6. 

2. Governing equations 
A non-rotating reference frame translating with the cylinder is used in this study. In 

this frame, the fluid at infinity has a uniform velocity of magnitude U in the x-direction, 
and the cylinder rotates in the counterclockwise direction with angular velocity Qez, as 
shown in figure 1. 

We use a velocity/vorticity formulation, consisting of the vorticity transport 
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i 

FIGURE 1. Definition sketch. 

equation and a vector Poisson equation for velocity. In two dimensions, the 
dimensionless equations are (Wu 1975; Fasel 1976) : 

-+ aw v.vw = -vv2w, 2 
at Re 

(2) and V 2 V  = -V x (we,), 

where we use the cylinder radius a as the lengthscale, and a / U  as the timescale. The 
velocity is normalized by U. Equation (2) is derived from the continuity equation 

v. v= 0, (3) 

the definition of vorticity for a two-dimensional flow 

we, = tl x V, 

and the vector identity 

v x v x v = V(V. v) -v2v, 
where V = ue,+ve, is the velocity vector. 

The dimensionless boundary conditions are 

(4) 

( 5 )  
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(Reddy & Thompson 1977) where 
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(1 1) 
6 = x;+y,", p = x7xg+Y7Yg, y = x;+y;J 
P = 5zz + 5yy7 Q = ~ z z  + ~ y y  J 

and J=xgY7-x7Y5 (12) 
is the Jacobian of the mapping between the (x, y)- and ([,T)-coordinate systems. Here, 
subscripts denote partial differentiation. In (8) and in the computer code developed, we 
have allowed the grid in the physical (x, y)-space to be time-dependent. This introduces 
additional terms associated with xt and yt into the governing equations in the 
generalized coordinate system. In this work, the body-fitted grid is simply one of 
cylindrical polar coordinates and is time-independent, except for a = 3.25 where the 
grid is made time-dependent for 24 < t d 54. The grid is uniformly spaced in the 
circumferential direction and is stretched in the radial direction. as described below. 

3. Numerical methods 
In this and other numerical simulations, it is necessary to confine the computation 

to a finite spatial domain. As a result, (6) cannot be applied directly at the outer 
perimeter of the computational domain. Various far-field boundary conditions, 
including those derived from potential flow and Oseen expansions, have been adopted 
in the past. The conditions imposed at the outer perimeter of the computational 
domain have been found to strongly influence the accuracy of steady flow computations 
in this unbounded geometry (Fornberg 1980; Ingham 1983; Ingham & Tang 1990). A 
second difficulty, common to most simulations based on primitive variable (pres- 
sure/velocity) or velocity/vorticity formulations, is that conditions on either the 
pressure or vorticity are required at solid boundaries. In this work, both of these 
difficulties are resolved by use of a new implementation of the Biot-Savart law briefly 
described below. For further details, the reader is referred to the work of Wu and 
coworkers (Wu & Thompson 1973; Wu 1976; Wang & Wu 1986), and Chen (1989). 

The definition (4) allows determination of the vorticity field from a known velocity 
field. Conversely, one can determine the velocity field from a known vorticity field via 
the generalized Biot-Savart law, which in two dimensions can be written as 

(Payne 1958; Wu 1976), where the subscript 0 denotes the field point where the velocity 
is evaluated, and V,  is the uniform flow at infinity. The first double integral in (13) is 
evaluated numerically over the fluid domain D, while the second is evaluated 
analytically over the solid body B. Here, we, is the vorticity at a point within the fluid, 
and SLe, is the angular velocity of a point within B. 

Equation (13) serves two purposes in this study. First, if the vorticity field w(r, t )  is 
known and the domain D is large enough to contain all of the vorticity generated at 
the solid boundary prior to time t ,  then the velocity on the perimeter of D can be 
evaluated directly by numerical integration of (13). Second, by linking the velocity and 
vorticity fields, (13) provides a basis for determining the vorticity on the solid 
boundary. Applying (13) to points rb on the solid boundary, one obtains 
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If V ,  and the body motion V(rb,t)  and Q(t)  are given, and the vorticity is known 
everywhere except on the solid boundary, then the only unknown in (14) is the 
vorticity on the solid boundary. Therefore, one can solve (14) as a vector Fredholm 
integral equation of the first kind to obtain the vorticity values at grid points on the 
solid boundary. 

In this work, the numerical integration of (13) and (14) is performed over each 
quadrilateral element in D using isoparametric representations commonly used in 
finite-element computations. All variables are located at the intersections of grid lines, 
namely corners of quadrilateral elements. The vorticity distribution over each 
quadrilateral element is approximated by bilinear shape functions. Integration is then 
performed over the [ - 1,1] x [ - 1,1] square in the isoparametric plane. When the field 
point is far from the quadrilateral element, more efficient asymptotic formulae (Weston 
& Liu 1982; Ting 1983) are employed. Further details are provided in Chen (1989). 

In deriving the discretized forms of (8)-( lo), second-order central differences are 
used for all derivatives in the radial direction 7, while a pseudospectral transform 
method (Orszag 1980; Zang, Wong & Hussaini 1982) is used to evaluate all derivatives 
in the circumferential direction 6. The cross-derivative terms are approximated by 
central differencing in 7 followed by pseudospectral transformtion in [. We use a fully 
explicit method to advance the vorticity transport equation (8) in time to obtain the 
vorticity values at the interior grid points. The vorticity on the outer perimeter of the 
computational domain is obtained by extrapolation. At this stage, the vorticity on the 
solid boundary lags by one time step. If this vorticity field were used to evaluate the 
right-hand side of (14), the result would not satisfy the no-slip and no-penetration 
conditions. The continuous generation of vorticity at the cylinder is properly simulated 
in our computations by adding or subtracting vorticity at the boundary at each time 
level in order to satisfy (14) identically. 

It should be noted that the solution of (14) is not unique (Wu 1976; Taslim, Kinney 
& Paolino 1984). To render the solution unique, Wu (1976) developed and imposed the 
principle of vorticity conservation, which states that the total vorticity in the combined 
fluid and solid regions must be zero at all times. A more general and robust procedure, 
applicable to flows over single and multiple solid bodies, has been developed by Chen 
(1989), and is used here. 

The computational loop to advance the solution from one time level to the next 
consists of the following steps: 

(i) The discretized vorticity transport equation (8) is advanced explicitly to obtain 
new vorticity values at all interior grid points, using a second-order rational 
Runge-Kutta method (Wambecq 1978). In contrast to the three-step Adams- 
Bashforth method used by previous authors, this allows a much larger time-step size 
due to a less severe stability constraint. 

(ii) Using known vorticity values at the interior grid points, the kinematic constraint 
(14) is used to update the vorticity values on the solid boundary. 

(iii) Using the updated vorticity field, the velocity at points on the outer perimeter 
of the computational domain is evaluated from (1 3). Once velocity boundary values are 
known, Poisson equations (9) and (10) are solved for the new velocity field. The 
discretizations of (9) and (10) are 11-banded and block-diagonal in form, and are 
solved by a preconditioned biconjugate gradient algorithm (Chen, Koniges & Anderson 
1989). 

The method outlined above is particularly well-suited for the initial development of 
the flow generated by impulsively started bodies. This is so because the vorticity is 
initially concentrated near the solid body, thus allowing the numerical simulation to be 
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confined to a domain containing nearly all the vorticity. Since the velocity at the outer 
perimeter of the computational domain is calculated via (13), imposition of 
computational far-field velocity boundary conditions is avoided. The use of (13) in 
calculating the far-field velocity would be numerically exact at time t if the 
computational domain contained all the vorticity generated at the cylinder surface 
prior to t .  We note that, in the streamfunction/vorticity formulation, the stream- 
function values on the outer perimeter of the computational domain can be 
obtained similarly by using an integral constraint equation (Wu & Sampath 1976). We 
also note that the velocity field can be obtained by applying (13) at every grid point. 
This results in a point-by-point scheme which, unlike schemes using the Poisson 
equations (9) and (lo), does not require solution of large linear equation systems. This 
approach was adopted in Wu’s earlier work, and might be attractive on massively 
parallel computers. 

The size of the computational domain is chosen according to the time span 
investigated. Here, we set the outer boundary of the computational domain to be a 
circle of radius 24 for t < 24. For a = 3.25, the grid is made time-dependent for 
24 d t d 54. We use 128 uniformly spaced and 120 stretched grid lines in the 0- and r- 
directions, respectively. The stretching function of Vinokur (1983) is used to distribute 
the circular grid lines on 1 < r d 24. This stretching allows grid points to be clustered 
near one or both ends of the domain, or anywhere between, by adjusting two 
parameters so and s,. Here, so and s, are the ratios of the spacing if N points were 
distributed uniformly, to the actual spacings at the inner and outer boundaries, 
respectively. For a = 0.5 and 1.0, we set so = 5.0 and s1 = 0.25. The grid spacings 
adjacent to the cylinder and at the outer perimeter are 4% and 75% of the cylinder 
radius, respectively. For E = 2.07 and 3.25, we set so = 10.0 and s1 = 0.25 to further 
cluster circular grid lines near the cylinder, with grid spacings adjacent to the cylinder 
and at the outer perimeter being 2 % and 76 % of the cylinder radius, respectively. At 
the end of the simulation, the vorticity magnitude on the outer perimeter is less than 
10-5 for all cases except as noted, indicating that only a negligible fraction of the 
vorticity has escaped the domain. 

With the grid chosen for a < 2.07, our method requires approximately 5 CPU 
seconds per time step on a CRAY 2. 

4. Determination of the initial flow 
In most numerical simulations of flow over impulsively started bodies, the initial 

flow field is taken to be the potential flow, since the vorticity at t = Of is concentrated 
on the body surface in the form of a vortex sheet. Perturbation solutions in which t is 
the small parameter have also been used as initial conditions (Collins & Dennis 1973 
for a = 0; Badr & Dennis 1985 for a + 0). Both approaches require special techniques 
in order to obtain the initial flow field. In the present work, determination of the initial 
flow field requires no special treatment. The same procedure used for determining the 
boundary vorticity distribution satisfying the no-slip and no-penetration conditions is 
applied. More specifically, (14) is solved for the unknown boundary vorticity at t = O’, 
with the vorticity taken to be zero at every grid point away from the cylinder surface. 
Once the boundary vorticity values are obtained, the initial velocity field is determined 
by solving (9) and (lo), with the velocity on the outer perimeter of the computational 
domain determined by application of (13) to points on the outer perimeter. This 
versatile procedure enables the numerical code to handle bodies of arbitrary shape 
undergoing arbitrary rotational and translational motion. 



The wake behind a circular cylinder 457 

Errors in approximating the vorticity layer of infinitesimal thickness at t = 0' are 
inherent to any computational scheme. However, as discussed by Lugt & Haussling 
(1974), even in the worst case of a body set impulsively into motion, the duration of 
these errors is confined to a very limited time close to t = 0. For the present algorithm, 
this will be confirmed in $5 by comparison at small times of our numerical results to 
the perturbation solution of Badr & Dennis (1985). 

5. Results 
In this section, numerical results for Re = 200 with 01 = 0.5, 1.0, 2.07, and 3.25 are 

presented and discussed. The parameter values chosen allow comparison to the 
experimental results of Coutanceau & MCnard (1985) and permit a critical evaluation 
of their conclusions regarding the suppression of vortex shedding by rotation. 

For a = 0.5 and 1.0, excellent agreement of our computed streamlines with previous 
experimental (Coutanceau & MCnard 1985) and numerical (Badr & Dennis 1985) 
results is obtained. For a = 2.07, for which no numerical results have been reported 
previously, we obtain excellent agreement with experiment. For a = 3.25, the relatively 
small disagreement between experiment and our computations is probably due to the 
effects of three-dimensionality and sidewall boundary layers in the former (see $5.4). 
For 01 = 0.5, 1.0, and 2.07, we continue the simulations to larger dimensionless times 
( t  = 24) than could be studied experimentally by Coutanceau & Menard (1985), so that 
the nature of the wake development can be better discerned. For a = 3.25, we extend 
our calculation to t = 54 to include shedding of the second and third vortices. 

For the same values of a, we also present computations of the vorticity contours, 
which we find useful for studying vortex shedding without the effects of 'masking' 
associated with frame-dependent streamlines. We also present trajectories of the shed 
vortices, computed from vorticity contours and from streamlines. 

We note that the timescale adopted here is the same as that used by Badr 81 Dennis 
(1985). Conversion of the dimensionless times of Coutanceau & MCnard (1985) to 
those herein requires multiplication of the former by a factor of two. 

As discussed in $4, the solution procedure presented in $ 3  is applied at t = O+ to 
obtain the initial flow field. Errors are present due to the inability of any numerical 
scheme to resolve the infinitesimal vorticity layer at t = O+.  To confine these errors to 
small times near t = 0, small initial time steps are used for all cases. For the first 20 time 
steps, At  = is used. This is followed by 28 steps with At = loV3, which brings the 
time level in 0.03. A constant At (lop2 for a = 0.5 and 1.0; 2.5 x for a = 2.07 and 
3.25) is taken for the rest of each simulation. The time-step size is not dictated by 
the numerical stability constraint, but rather is chosen on the basis of accuracy 
considerations. To demonstrate the accuracy of the initial flow field, we show in figure 
2(a-d) the variation of vorticity on the cylinder for four values of a at small times. The 
numerical results are compared to the asymptotic formula 

3x3 16) 
w(l,o, t )  x { a (2 2 h  -3 +('+A) sin 6 + (2.7844~ -7 at cos o 

6.5577A-4( x3 1 +&)I tsin28) (15) 

given by Badr & Dennis (1985), where 

A = (8t/Re)t. 
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FIGURE 2(a, b).  For caption see facing page. 

We see that agreement with the asymptotic results improves as t increases. Better 
agreement is achieved for a = 2.07 and 3.25 than for smaller 01 since a smaller time-step 
size is used. These results demonstrate that errors are indeed confined to a very limited 
time close to t = 0,  as reported by Lugt & Haussling (1974). 

5.1. Results for u = 0.5 
In this subsection, we extend the u = 0.5 computations of Badr & Dennis (1985) to 
larger dimensionless times than considered by them or in the experiments of 
Coutanceau & Mtnard. The kinematics and dynamics of vortex shedding are discussed 
using instantaneous streamlines in two different reference frames, as well as vorticity 
distributions. The streamfunction is computed from the velocity field by a least-squares 
method described by Chen (1989). 

Computations performed for 0 < t < 24 show that the results are in excellent 
agreement with the experimental work of Coustanceau & Menard (1985) for 
1 < t < 13 and the computations of Badr & Dennis (1985) for 1 < t < 12. 
Figure 3 (a-j) shows a sequence of instantaneous computed streamlines for 8 < t < 24, 
viewed from a non-rotating frame translating with the circular cylinder. We adopt the 
notation used by Coutanceau & Mtnard (1985) in their discussion of the flow 
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FIGURE 2. Evolution of the vorticity distribution on the surface of the cylinder at early times, 
Re = 200. Symbols: asymptotic solution; 0, t = 0.05; A, t = 0.1; 0, t = 0.2. -, Numerical 
solution. (a) a = 0.5, (b )  a = 1.0, (c) a = 2.07, (d )  a = 3.25.  

development for t ,< 13, to which the reader is referred. We observe that the 
coalescence of two ‘intermediate’ eddies Ej and Ei to form eddy E, at t z 12 (figure 
3c, d )  indeed repeats (at t x 22; figure 3h, i) as predicted by Coutanceau & Mtnard 
(1985). (The subscript here denotes the order of appearance of eddies after the 
impulsive start.) The transposition of saddle points S, and S; associated with eddies E, 
and E;, respectively, discussed by Coutanceau & MCnard (1985) and sketched by Badr 
et al. (1986), is clearly shown in figure 3(a, b). Also, a common boundary for E, and 
Ej, which was difficult to observe experimentally (Coutanceau & MCnard 1985) due to 
limitations of the flow visualization technique, does indeed exist, as shown in figure 
3 (a). The common boundary soon becomes an ‘alleyway’ for fluid to pass through, as 
shown in figure 3(b). As noted by Eaton (1987), existence of such an alleyway in an 
unsteady flow does not imply that fluid is carried from one side of the wake to the 
other. 

As discussed by Perry et al. (1982), the streamlines are not invariant with respect to 
a change in reference frame, and the vortex street can appear very differently in 
different frames. To best observe the development of a vortex, the observer should 
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FIGURE 3(u-h). For caption see facing page. 

move with its centre (Lugt 1979). Otherwise, the vortex can be masked by the motion 
of the observer relative to the vortex (Williamson 1985; Coutanceau & Menard 1985). 
This masking phenomenon was described by Coutanceau & Menard as the opening up 
of vortices and disappearance of closure points into a wave-like pattern, as sketched 
in Lugt (1979). Since an attached vortex translates with the cylinder, it can be clearly 
observed in a frame translating with the cylinder. However, after the vortex is shed, its 
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FIGURE 3. Instantaneous streamlines for Re = 200, a = 0.5 at various times, viewed from a non- 
rotating frame translating with the cylinder. Streamlines with non-negative (including zero) and 
negative streamfunction values (9) are shown by solid and dashed lines, respectively. At each time, 
the cylinder is a streamline with 9 = 0. The values of $ plotted are 0, -0.01, +0.02, -0.03, kO.04, 
k0.06, f0.08, fO.lO, k0.12, f0.15, k0.20, k0.25, f0.30, k0.35, f0.40, k0.45, k0.50, +0.60, 
f0.70, f0.80, fl.OO, with an increment of f0.2 thereafter. (a) t = 8.0, (b) 9.0, ( c )  11.0, (d )  12.0, 
(e) 14.0, ( f )  16.0, (g) 18.0, (h) 20.0, (i) 22.0, ( j )  24.0. 

core is, especially in the far wake, essentially stationary with respect to the free stream. 
Therefore, it is generally easier to observe shed vortices in a frame fixed with the 
undisturbed fluid. The instantaneous streamlines observed in such a frame are shown 
at selected times in figure 4(u-c). As expected, the shed vortices are clearly 
distinguishable. We note that two additional vortices are shed over an interval of about 
10 dimensionless time units, and that the flow near the cylinder is very similar in figures 
4(a) and 4(c). We further note that in a moving frame, the cylinder itself is not a 
streamline, and the attached vortices in figure ~ ( u - c )  are now masked by the velocity 
field in the near wake of the cylinder. In a frame translating with the cylinder, however, 
the shed vortices are hidden in the oscillating wake, as shown in figure 5(a-c) for the 
values of t shown in figure 4(a-c). 

At the same dimensionless times, figure 6 (a-c) shows the corresponding vorticity 
contours, which are invariant with respect to translation of the observer. Because 
rotation divides the surface of the cylinder into ‘downstream-moving’ (n < 8 < 2n) 
and ‘upstream-moving’ (0 < 8 < n) parts, a basic symmetry of the vorticity field for 
the non-rotating (a = 0) case (associated with the fact that for a T-periodic flow, the 
relations 

lead to w(r, 8, t )  = - w ( Y ,  -8, t - ~ ) ,  where 0 < T < T is a phase difference) is broken. 
Nonetheless, the process is topologically similar to the a = 0 case, with the shedding 
of vortices of alternating rotational sense being associated with the thinning and 
severance of elongated vorticity contours emanating from opposite sides of the 
cylinder. As in the experiments of Diaz et al. (1983) at higher Re, cylinder rotation has 
the effect of altering the initial trajectories of the shed vortices, although these are 
expected to become parallel to the direction of cylinder translation as the vortices move 
farther away from the rotating cylinder and are advected downstream. As in the 
OL = 0 case, vortices of opposite sense lie on opposite sides of a ‘street’, although the 
rotation has clearly displaced the midline of the street upward. 

Figure 7(a ,  b) shows that the computation of vortex core and saddle trajectories 
using streamfunction values (in excellent agreement with the trajectories computed by 
Coutanceau & MCnard 1985 from experimental streamline data and shown in their 
figure 4u) can differ significantly from those computed using the vorticity distribution. 

u(r,8,t) = u(r, - 8 , t - ~ ) ,  v(r,8,t)  = -z)(Y, - 8 , t - ~ )  (17) 
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FIGURE 4. Instantaneous streamlines for Re = 200, 01 = 0.5, viewed from a frame fixed with the 
undisturbed fluid. Dashed (solid) lines represent constant non-negative (negative) streamfunction 
values with increments of A$ = kO.1, including I++ = 0. (a) t = 12.0, (b) 17.0, (c) 22.0. 

For example, at t = 7, the streamwise location of the core of the first vortex is at about 
x / a  = 3.3 as determined from the streamfunction (in a frame translating with the 
cylinder), and a bit less than x / a  = 2.5 as determined from the vorticity. This clearly 
illustrates the effect of streamline masking on vortices moving with velocities 
significantly different than that of the frame to which the motion is referred. 
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The trajectories of figure 7 (b) also show that the vortex cores execute motions much 
more complicated than would be inferred from the trajectories computed from 
streamfunction values (figure 7a of the present work and figure 4a of Badr & Dennis 
1985). Specifically, for the first vortex core, figure 7(b) shows that although the x- 
component of the core velocity increases to nearly the free-stream value as the vortex 
moves farther behind the cylinder, the y-component oscillates (being sometimes 
negative) about a decidedly non-zero mean, to a distance at least 15 cylinder radii 
downstream. 

As a further check on the accuracy of our results, we show in figure 8 the temporal 
evolution of profiles of the x-component of the velocity along the y-axis below the 
cylinder for t < 8. Very good quantitative agreement with experimental data taken 
from Coutanceau & Menard (1985) is obtained near the cylinder. Farther away, there 
is slightly more scatter in the experimental data. Our results along the positive y-axis 
are graphically indistinguishable from those of Badr & Dennis (1985), obtained using 
different numerical methods. 

5.2. Results for  a = 1.0 
For a = 1.0, we have computed streamlines analogous to those of figure 3(a-J) for 
a = 0.5. Our results are indistinguishable from those of Badr & Dennis (1985) for the 
range of t ( 1  < t < 12) covered in their work. For 14 < t < 24, figure 9(a-f) shows 
instantaneous streamlines viewed from a non-rotating frame translating with the 
cylinder, beginning with the largest value of t considered in the experimental work of 
Coutanceau & Mtnard (1985). Unlike the CL = 0.5 case where the second eddy E, 
appears at t z 2.0, here E, and the third intermediate eddy E; form almost 
simultaneously at t z 6.5, as shown in the earlier experimental and computational 
work. During the next cycle of vortex formation, however, E, appears before Ek is 
formed, as seen in figure 9(b, c). In general, the increase in CL tends to inhibit the 
formation of the vortex at the downstream-moving side of the cylinder, as reported in 
previous experiments @iaz et al. 1983; Coutanceau & Menard 1985). 

Figure 10(a-e) shows that the trajectories of the shed vortices for 01 = 1.0 are 
qualitatively similar to those for a = 0.5, except that the vortices shed from the 
downstream-moving side now lie above the midline of symmetry (6 = 0), and due to 
the counterclockwise fluid motion generated near the cylinder by its rotation, will 
remain above the midline during their subsequent advection downstream. Otherwise, 
the topology of the shedding process is altered relatively little, with vortices of 
alternating sense being shed from opposite sides of the cylinder, and subsequently 
being found on opposite sides of an, albeit distorted, ‘street’ as they are advected 
downstream. 

We have also computed the temporal evolution of profiles of the x- and y- 
components of the velocity along the x-axis in the wake of the cylinder for t < 8. Again, 
good agreement with the experimental results of Coutanceau & MCnard (1985) is 
obtained. 

5.3. Results for  a = 2.07 
As a increases, the vorticity layer generated at the upstream-moving side of the cylinder 
intensifies, resulting in even larger radial derivatives. Consequently, it becomes more 
diffiecllt to maintain accuracy, as pointed out by Badr & Dennis (1985). We are able 
to achieve accurate numerical results by using finer radial grid spacings near the 
cylinder, as discussed in $3, and a smaller time-step size, as discussed at the beginning 
of this section. Figure 1 1  (a-h) shows instantaneous streamlines in the near wake for 
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FIGURE 6. Equivorticity contours for Re = 200, cc = 0.5. Dashed (solid) lines represent constant 
positive (negative) vorticity values with a constant increment of fO.5 ,  with the magnitude of the 
weakest contour level shown being 0.5. (a) t = 12.0, (b) 17.0, (c )  22.0. 

3 < t < 24, viewed from a non-rotating frame translating with the cylinder. As seen in 
figure 12(a, b), our results are virtually identical to the flow visualizations of 
Coutanceau & MCnard (1985) for t d 9, the longest dimensionless time for which 
experimental results are available. The sequence of figures 13 (a-d) for t = 2,4,  6, and 
8 shows that as t increases the computed flow is also in excellent agreement with 
experiment upstream of the cylinder, and becomes increasingly less symmetric about 
the x-axis. 

The excellent agreement between our two-dimensional computations and the flow 
visualizations of Coutanceau & Menard (1985) in a single spanwise plane strongly 
suggests that for t < 9 the flow is quite two-dimensional, at least near the centre of the 
span of the cylinder, and that sidewall boundary-layer effects are unimportant. 

To better elucidate the vortex shedding process, we show in figure 14(a-f) the 
vorticity contours for t d 24. As for smaller values of a, vortex shedding still occurs for 
a = 2.07, with vortices of alternating rotational sense shed from opposite sides of the 
cylinder. However, at this larger rotation rate the asymmetry of the process is clear, 
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FIGURE 7. Trajectories of the cores C,  and closure points S ,  for Re = 200, a = 0.5 obtained from 

(a) instantaneous streamlines, and (b) equivorticity contours. 

and manifests itself in the considerably reduced strength of the vortices shed from the 
downstream-moving side of the cylinder (relative to those for a = 0.5 shown in figure 
6a-c, and relative to those of opposite rotational sense for LY. = 2.07), as well as in the 
fact that the shed vortices seem to be forming a ‘single file’ line, rather than pairing off 
(according to rotational sense) on opposite sides of a ‘street’. The vortices shed from 
the downstream-moving side of the cylinder are relatively weak because immediately 
after the impulsive start, this part of the rotating boundary travels at about the same 
speed as the adjacent fluid. The weak vorticity layer generated near 8 = i7c (shown in 
figure 2c) is responsible for the weakness of the shed vortex. 

Figure 15 shows that the trajectory of the vortex core C, determined from equi- 
vorticity contours is again very different from the trajectory determined by Coutanceau 
& MCnard from streamline data (their figure 14). In particular, the velocity of the first 
vortex core still has a considerable y-component until at least t = 24. This disagreement 
may be due to either the fact that the earlier determination of the vortex core trajectory 
was made from streamline data (discussed in §S. l ) ,  or to the ‘confining wall effect’ in 
the experimental work (discussed by Coutanceau & MCnard in conjunction with their 
results for a = 3.25). 
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FIGURE 8. Temporal evolution of u-velocity profiles (in the frame described in figure 3) along the 
y-axis in the cylinder wake for Re = 200, a = 0.5, 8 = $. -, Numerical solution. Symbols, 
experimental data of Coutanceau & Mtnard (1985); V, t = 0.5; A, 4.0; *, 5.0; 0,  6.0. 

5.4. Results for a = 3.25 
For-a  = 3.25, figure 16(a-d) shows instantaneous streamlines in the near wake for 
t = 5, 9, 16, and 24, viewed from a non-rotating frame translating with the cylinder. In 
the same reference frame, figure 17(u-d) shows comparisons of the computed 
streamlines to unpublished experimental results of Coutanceau & Mknard centred 
farther upstream. We note that the agreement (compare also figure 16b to figure 11 d 
of Coutanceau & MCnard 1985), is very good. However, at t = 9 (the largest 
dimensionless time for which Coutanceau & MCnard reported results) the com- 
putational results differ perceptibly from the flow visualization of Coutanceau & 
Minard (1985). We believe that the differences result from three-dimensional and 
sidewall boundary-layer effects in the experiments for large values of a at large time, 
as discussed by Coutanceau & MCnard (1985). Although for a = 0 the nominally two- 
dimensional flow at Re = 200 is unstable with respect to three-dimensional 
disturbances (Williamson 1988), no information regarding the effect of rotation on 
stability appears to be available. 

Computed vorticity contours are shown for 8 < t < 54 in figure 18(a-h). At t = 24, 
figure 18(c) shows that the elongated vorticity contour has not yet been severed. To 
investigate whether the vortex shedding process continues to larger t for this value of 
a, we let the size of the computational domain grow linearly in time until t = 54 in 
order to extend the computation. The same values of so and s1 in the stretching function 
are used to distribute 120 circular grid lines between r = 1 and r = 1.5t - 12. The 
numerical solution at t = 54 is not as accurate as at smaller dimensionless times since 
the vorticity at the outer perimeter ( r  = 69) is not negligible (on the order of 10-1 or 
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FIGURE 9. Instantaneous streamlines for Re = 200, a = 1.0 at various times, viewed from the 
reference frame described in figure 3. The plotting convention and streamfunction values are as in 
figure 3 .  (a) t = 14.0, (b) 16.5, (c) 17.5, ( d )  18.0, (e)  21.0, (j") 24.0. 

smaller) at the end of the simulation. Nonetheless, we believe that our computation of 
the vortex shedding in the near wake is qualitatively correct, even for t > 32 (at which 
time the maximum of the absolute value of the vorticity on the outer boundary is still 
less than 4 x lo-'). 

Figure 18(e) shows that a second vortex is shed into the wake as for smaller a, 
although shedding here occurs at a much later time. However, even in a reference frame 
fixed with the undisturbed fluid, the weak second vortex is masked by the high velocity 
induced in the near wake by the rapidly rotating cylinder. Therefore, for large 01 it is 
not surprising that previous flow visualization experiments, including those performed 
in a frame translating with the cylinder, have failed to reveal the shedding of a second 
(weaker) vortex. Moreover, in the work of Coutanceau & MCnard (1985) ,  experimental 
limitations prevented continuation of the flow to the dimensionless time at which the 
second vortex would have been shed. These difficulties have led to the erroneous 
conclusions that for a > 2.5 (or a > l), no vortices are shed after the initial (strong) 
starting vortex, and that the vortex street is completely destroyed. 



The wuke behind a circular cylinder 469 

FIGURE 10. Equivorticity contours for Re = 200, a = 1.0. Dashed (solid) lines represent constant 
positive (negative) vorticity values with a constant increment of 0.5, with the magnitude of the 
weakest contour level shown being 0.5. (a) t = 8.0, (b) 10.0, (c)  14.0, ( d )  20.0, (e) 24.0. 

To render the second vortex distinguishable using streamlines, we show in figure 
19(a) the streamlines at t = 32 in a reference frame moving with the core of the second 
vortex. Experimentally, this would be a difficult task since a camera would have to 
move with the vortex core velocity vector (u, e, + v, eJ relative to the cylinder, which 
is not known a pviori. Numerically, this is achieved by simply subtracting 
streamfunction values corresponding to the velocity of the vortex core from those in 
an inertial reference frame fixed with the cylinder. The third vortex is clearly visible in 
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FIGURE 11. Instantaneous streamlines for Re = 200, a = 2.07 at various times, viewed from the 
reference frame described in figure 3. In addition to those contour levels shown in figure 3, 
$ = -0.17, -0.19, -0.21, -0.22, -0.23, -0.24 are also plotted. (a) t = 3.0, (b) 7.0, (c) 13.0, ( d )  
17.0, (e) 21.0, (f) 22.0, Cp) 22.5, (h) 24.0. 

a frame translating with its core (figure 19b), while the first vortex is still sufficiently 
strong to be discernible in this reference frame (in which its core velocity is non-zero). 

In contrast to the results presented above for smaller a, for a = 3.25 the third vortex 
shed is of the same rotational sense as the second. This differs from the case Re = lo3 
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FIGURE 12. Comparison of computed (left) and experimental (right) instantaneous streamlines for 
Re = 200, a = 2.07. The camera in the experiment and the reference frame in the computation 
translate with the cylinder. (a) t = 5.0, (b) t = 9.0. 

and a = 3 studied by Badr et al. (1990), in which the first two vortices formed are of 
the same sense, but only one is shed. Moreover, in the two-dimensional computations 
of Badr et al. (1990), only two vortices were formed, and the computed flow 
approached a steady state. With respect to understanding the real flow, however, their 
results must be regarded with caution, as the experiments of the same authors clearly 
show that the flow is three-dimensional for Re = lo3 and OL = 3. 

For ct = 3.25 the trajectory in figure 20 shows that, in the mean, the first vortex 
indeed continues to move upwards, in contrast to the result of Coutanceau & MCnard 
(their figure 14) in which the first vortex apparently moves back to the midline 
( y  = 0). Coutanceau & MCnard ascribe this artifact to the effect of a confining (upper) 
wall, a complication not present in our computations. 

5.5. Temporal evolution of the lift and drag coeficients 
Finally, we present the temporal evolution of the lift and drag coefficients defined by 

C, = L/pU2a  (1 8) 

and C ,  = D/pU2a,  (19) 
where L and D are the lift and drag forces acting on the cylinder, respectively, and p 
is the density of the fluid. Integrating the pressure and shear stresses over the surface 
of the cylinder, we can express these in ( r ,  @-coordinates as 
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FIGURE 13. Comparison of computed (left) and experimental (right) instantaneous streamlines for 
Re = 200, OL = 2.07. Reference frame and camera motion are as described in figure 12. (a) t = 2.0, (b) 
4.0, (c)  6.0, ( d )  8.0. 
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FIGURE 14. Equivorticity contours for Re = 200, cc = 2.07. Dashed (solid) lines represent constant 
positive (negative) vorticity values with a constant increment of 0.5, with the magnitude of the 
weakest contour level shown being 0.5. (a) t = 5.0, (b) 9.0, (c )  13.0, ( d )  17.0, (e)  21.0, (f) 24.0. 
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FIGURE 15. Trajectory of the core of the first vortex for Re = 200, a = 2.07 
obtained from equivorticity contours. 

-2 

FIGURE 16. Instantaneous streamlines for Re = 200, a = 3.25 at various times, viewed from the 
reference frame described in figure 3.  The plotting convention is as in figure 3. The values of @ plotted 
are 0, fO.1, f0.2, f0.3, f0 .4 ,  k0.5, k0.6, f0.7, f0.8, f0.9, f l . O ,  with an increment of f0.2 
thereafter. (a) t = 5.0, (b) 9.0, (c) 16.0, (d) 24.0. 

and c, = CDP + C,, = - ie 1; [ k)* - w.1 sin 6 do, 

where the subscripts p and f denote contributions due to the pressure and friction, 
respectively, and the subscript b denotes quantities evaluated on the cylinder. We note 
that (20) and (21) differ from the expressions given by Badr et al. (1989) by a sign, due 
to a difference in the definition of vorticity. Figure 21 (a, b) shows the temporal 
evolution of the lift and drag coefficients at various a for t < 24. Negative values of C, 
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FIGURE 17. Comparison of computed (left) and experimental (right) instantaneous streamlines for 
Re = 200, a = 3.25. Reference frame and camera motion are as described in figure 12. (a) t = 2.0, (b) 
4.0, (c) 6.0, ( d )  8.0. 
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FIGURE 18. Equivorticity contours for Re = 200, a = 3.25. Dashed (solid) lines represent constant 
positive (negative) vorticity values with a constant increment of 0.5, with the magnitude of the 
weakest contour level shown being 0.5. (a) t = 8.0, (b) 12.0, (c) 24.0, (d )  32.0, (e) 35.0, (f) 41.0, ( g )  
48.0, (h)  54.0. 
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FIGURE 19. Instantaneous streamlines for Re = 200, a = 3.25: (a) t = 32.0, viewed from a frame 
translating with the core of the second vortex; (b) t = 54.0, viewed from a frame translating with the 
core of the third vortex. Dashed (solid) lines represent constant non-negative (negative) 
streamfunction values with increments of A$ = 0.2, including $ = 0. Note that in (b), eddy E, has 
passed from the field of view. 

correspond to a lift force in the negative y-direction. The time-periodic nature of C, 
is well established for a = 0.5 and 1.0. At higher values of a, however, more time is 
required for periodicity to be established, since the second and subsequent eddies form 
and are shed much later, as discussed above. In figure 22(a, b), the pressure and skin 
friction contributions to the lift and drag are shown separately for 01 = 1.0. Similarly 
small viscous contributions to C, and C, are found for all other values of 01 

investigated. It is clear that lift and drag are largely due to the pressure force, consistent 
with previous work showing that the Magnus effect is primarily an inviscid 
phenomenon. 

6. Discussion 
Our computations of the temporal development of the flow generated by a circular 
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cylinder started impulsively from rest into steady rotatory and rectilinear motion at 
Re = 200 show that, for the largest value of a (3.25) investigated by Coutanceau & 
Minard (1985), vortex shedding continues after the first vortex is shed, contrary to 
earlier conclusions. It is likely that these authors were led to conclude that vortex 
shedding at Re = 200 is suppressed for a 2 2 because their experimental facility did not 
allow for visualization of the flow for a long enough time. Even if that limitation had 
been overcome, however, it is likely that their flow visualization technique (which 
approximately yields instantaneous streamlines) would have failed to reveal the 
presence of the second vortex, due to masking by the large velocities induced in the 
near wake by the rapidly rotating cylinder. 

We note that for a = 3.25 the time interval between the shedding of the first and 
second vortices is much longer than the time required to shed the first. We conjecture 
that for subsequent vortices, the interval between shedding of the 2nth and (2n + 1)th 
vortices will be considerably shorter than the interval between shedding of the 
(2n + 1)th and (2n + 2)th. 

We also observe that for a = 2.07 and 3.25 the second vortex (shed from the 
downstream-moving side of the cylinder) is much smaller than the first, and conjecture 
that, in general, the 2nth vortex shed will be significantly smaller than the (2n+ 1)th. 
Unlike the non-rotating (a = 0) case, there is no requirement that the vortices shed 
from opposite sides of the cylinder be of equal magnitude, or even that consecutive 
vortices be shed alternately from opposite sides of the cylinder. In fact, there does not 
appear to be any reason why vortices cannot be shed from a single (upstream-moving) 
side of the cylinder. 

From a more general standpoint, we can consider the computational and 
experimental results in the broader context of three-dimensional flows. For this 
purpose, it is useful to characterize the asymptotic stability of the flow in terms of a 
translational Reynolds number defined by Re, = 2aU/v and a rotational Reynolds 
number defined by Re, = 2a252/v, equivalent to Re and aRe, respectively. Thus, 
uniform flow past a rotating circular cylinder can be considered in the (Re,, &,)-plane, 
a quarter of which is shown in figure 23. From the computational results of Jackson 
(1987) and Zebib (1987) and the experimental work cited therein, we know that 
uniform steady two-dimensional flow past a non-rotating cylinder (Re, = 0) is stable 
for Re, 5 45, at which point a supercritical Hopf bifurcation to a time-periodic two- 
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FIGURE 21. Temporal evolution of (a)  the lift and (b) drag coefficients for Re = 200 and various a for 

0 < t < 2 4 ;  -, a = 0.5; ......, a =  1.0. _____- a = 2.07; , ct = 3.25. 

dimensional oscillating wake flow occurs. On the other hand, for a circular cylinder 
undergoing steady rotation only (Re, = 0), Walowit, Tsao & DiPrima (1964) have 
shown that the steady purely azimuthal flow (V  = e,SZa2/r) is linearly stable for 
Re, 6 11, at which point it becomes unstable with respect to a steady axisymmetric 
flow consisting of Taylor vortices. 

We therefore conjecture that steady two-dimensional flows past a rotating circular 
cylinder are stable with respect to infinitesimally small but otherwise arbitrary 
disturbances in a region (I in figure 23) of the (Re,,Re,)-quarter-plane including the 
origin. As the curve (shown schematically and referred to below as the 'stability 
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the slope of a line connecting the origin to a point in the quarter-plane) the ensuing 
motion is time-periodic and two-dimensional, while for large a it is steady and three- 
dimensional (axisymmetric in the limit Re,+O). It would thus appear that 

(a) there exists at least one point on the stability boundary at which the nature of 
the bifurcation from steady two-dimensional flow changes, and 

(b) there exist two regions adjacent to I, in which an unsteady two-dimensional flow 
should be realizable (Region 11) and in which a steady three-dimensional flow should 
be realizable (Region 111). 

Although it is known for Re, = 0 (Williamson 1988) and for Re, =+= 0 (Badr et al. 
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FIGURE 23. 

0 45 

Re, 
Schematic division of the (Re,, Re,)-quarter-plane. Two-dimensional steady 

are stable in region I.  Regions I1 and I11 are described in the text. 
solutions 

1990) that the unsteady two-dimensional flow becomes unstable with respect to 
unsteady three-dimensional flows at sufficiently high Re,, the bifurcation structure 
remains to be determined. Among the questions to be answered are 

(i) If Regions I1 and I11 have a common boundary, how does a transition occur from 
unsteady two-dimensional flow to steady three-dimensional flow? 

(ii) If Regions I1 and I11 do not have a common boundary, what lies between them? 
(iii) How does the bifurcation from steady two-dimensional flow change along the 

stability boundary? 
From the standpoint of controlling laminar two-dimensional vortex shedding from 

a circular cylinder by using either ‘active’ control (a term that in the fluid mechanics 
literature has come to mean a time-periodic, and frequently harmonic input, e.g. 
52(t+ T) = Q(t)  or Q ( t )  = 52, sin 27cft) or feedback control, the present calculations 
show that the nature of the vorticity field as well as the vortex shedding process can be 
significantly altered by cylinder rotation. To the best of our knowledge, the only 
investigations to date concerning the effect of a time-dependent rotation rate on the 
shedding process are the experimental studies of Taneda (1977, 1978) and Tokumaru 
& Dimotakis (1991), and the combined experimental and theoretical studies of 
Okajima, Takata & Asanuma (1975), Mo (1989), and Wu, Mo & Vakili (1989). 

The experimental work of Taneda (1978) for 30 < Re < 300 (including the range in 
which Hopf bifurcation (Jackson 1987; Zebib 1987) of the steady two-dimensional 
flow at Re z 45 leads to unsteady asymmetric two-dimensional solutions exhibiting 
vortex shedding) shows that for sufficiently large values of the amplitude and frequency 
of time-harmonic rotatory oscillations, vortex shedding (and indeed the formation of 
attached vortices) can be eliminated. Moreover, Taneda’s flow visualizations (see his 
figure 3 4  indicate that under certain circumstances, a flow can be generated that is 
nearly symmetric about 8 = 0. This suggests that the flow can be driven to a symmetric 
state, and provides reason to believe that it can be stabilized (in the control-theoretical 
sense; cf. Kuo 1975) about a symmetric state in which no vortex shedding occurs. 
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